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A new grid-adaption algorithm for problems in computational fluid
dynamics is presented. The basic eguations are derived from a varia-
tional problem formulated in the parametric domain of the mapping
that defines the existing grid. Modification of the basic equations
provides desirable properties in boundary layers. The resulting modified
anisotropic diffusion equations are solved for the computational coor-
dinates as tunctions of the parametric coordinates and these functions
are numerically inverted. Numerical examples show that the algorithm
is robust, that shocks and boundary layers are well-resolved on the
adapted grid, and that the Hlow solution becomes a globally smooth
function of the computational coordinates.  © 1994 Academic Press, inc.

1. INTRODUCTION

A major problem within the field of computational fluid
dynamics {CFD) is the generation of appropriate structured
computational grids such that sufficient accuracy of the
numerical flow solution is obtained with a limited number
of grid points. The required density of grid points is deter-
mined in general by gradients, such as gradients of the flow
solution and curvature of the geometry. Large gradients
require a high grid-point density in order to reduce the
numerical errors. At the stage of grid generation the flow
solution is unknown, however, and tlie prescription of grid
resolution has to be based on a qualitative estimate of the
flow solution.

To eliminate the need for a priori qualitative estimates of
the flow solution, considerable effort has been directed
towards the development of solution-adaptive grid genera-
tion methods; see, e.g., the surveys of Eiseman [1] and
Thompsen [2]. In general these methods redistribute the
peoints of a structured grid with the objective to improve
accuracy of the flow solution by recalculation of the flow on
the adapted grid. Many of the methods reviewed in [1, 2]

* This investigation has partly been carried out under a contract awarded
by the European Economic Community within the BRITE/EURAM 1042
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are related to the one-dimensional equidistribution
principle which requires grid spacing to be inversely
proportional to a weight function. The weight function is
commonly taken as some norm of the first and/or second
derivatives of the flow solution. The equidistribution prin-
ciple can be formulated in a number of different ways [1]
such as the wvariational statement and the differential
statement formed by the Euler equation of the variational
statement.

Numerous researchers have developed extensions of the
one-dimensional equidistribution principle into two or
three dimensions. Dwyer [3] successfully applied equi-
distribution along one family of grid lines {arcs in physical
space along which one of the computational coordinates is
a constant) within two-dimensional problems. Nakahashi
and Deiwert [4] applied the concept of equidistribution
along both families of grid lines but added orthogonality
control by means of a torsion spring analogy to prevent the
occurrence of cells with excessive skewness. Anderson and
Steinbrenner [5] and Anderson [6] noted that the
Thompson non-adaptive grid generation scheme based
upon solving a system of Poisson equations [77], can
be interpreted as an equidistribution of curvature and
orthogonality along grid lines. Comparison with the one-
dimensional equidistribution principle led them to express
the source terms in the Poisson equations in terms of weight
functions that measure the flow solution activity along grid
lines. Anderson [8] exploited the diffusive form of the
Poisson equations suggested by Winslow [ 9] and expressed
the diffusion coefficient in terms of a single weight function.
This method can be interpreted as an equidistribution
scheme where the product of a weight function and cell
area/volume is equidistributed over the physical domain,
Winslow [9] showed that the diffusion equations are the
Euler equations of a variational problem formulation.

The present paper describes an extension of the one-
dimensional variational equidistribution statement into two
dimensions which can be directly extended into three
dimensions. Separate weight functions are used in the func-
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tional while the resulting Euler equations are linear and
uncoupled partial differential equations. Similar to the work
of Lee and Loellbach [ 107 the equations are formulated in
the so-called parametric domain to retain the global charac-
teristics of the initial grid. To prevent ‘the occurrence of
skew cells in boundary layers, the adaption equations are
slightly modified. Finally numerical adaption examples are
presented.

2. ADAPTIVE GRID GENERATION IN
THE PARAMETRIC DOMAIN

Let 2 < R* be the physical domain in two-dimensional
space on which a computational grid has to be adapted,
and let Q_=[0,1]*=R? be the so-called computational
domain. A boundary-conforming curvilinear coordinate
system in £2 can be defined by mapping Q. onto £, so that
the cartesian computational coordinates &= (&, )T in Q,
are the curvilinear coordinates in € and are mapped onto
the physical coordinates x = (x, ¥)T in Q. The problem of
grid generation in general and grid adaption in particular
can be formulated in terms of the determination of a suitable
mapping from £2. to Q. In the present paper it is assumed
that the initial grid incorporates sufficient quality wr.t
geometry resolution, orthogonality, and smoothness and
has merely to be adapted to the flow solution. To retain the
characteristics of the initial grid in a global way, the adap-
tion equations are formulated in the parametric domain,
based on the idea of Lee and Loellbach [10]. The concept
of grid adaption in the parametric domain is illustrated in
Fig. 1. Let the initial grid in the physical domain  be the
image of a uniform cartesian grid in the unit square
[0, 11> = R? under a mapping M. The cartesian coordinates
in the unit square denoted by p=(p,q)T serve as
parameters to describe the physical domain; hence the unit
square is called the parametric domain, denoted in the pre-
sent paper by 2. The idea is to adapt the cartesian grid in
Q, and to apply the mapping M to generate the adapted
grid in £2.

An attractive feature of grid adaption in the parametric
domain is the natural retainment of global characteristics of
the initial grid in the physical domain, such as high resolu-
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FIG. 1. Grid adaption by using an adaptive mapping 4 that maps the

computational domain onto the parametric domain.
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tion at geometry parts with high curvature. Hence, the
initial grid can be considered to be adapted to the geometry,
whereas the regenerated grid is additionally adapted to the
flow solution.

The problem of grid adaption in £2, can conveniently be
formulated in terms of determination of a suitable map-
ping 4 that maps a cartesian grid in the camputational
domain Q, to the adapted grid in £, (see Fig. 1). Conse-
quently, the adapted grid in the physical domain £2 is the
image of the cartesian grid in 2, produced by the com-
pound mapping M- 4. Hence the problem is to find the
parametric coordinates p and g as functions of the computa-
tional coordinates ¢ and #, which is the main topic of the
next sections.

3. BASIC ADAPTION MAPPING

In one-dimensional adaption problems the mapping
between the computational domain [0,1]cR and the
parametric domain [0, 1] =R can be defined as the solu-
tion of the one-dimensional equidistribution statement. In
differential form the statement can be written as:

d (5")=0, A0 =0, pl)=1 (1)

dp\w
where w{p) is a positive weight function that measures the
flow activity in some sense. From (1) it directly follows that

i
" & » = const = wp, = const,

resulting in small values of p, when w is large and vice versa.
Since w is a measure of flow activity in , and p; is a
measure of grid spacing in £2,,, the grid is dense where flow
activity is high and the grid is sparse where flow activity is
low. Equation (1) is the Euler equation associated with a
variational formulation of the equidistribution statement,
which minimizes the functional

1 2
nel=| i—”dp. (2)

0

The variational formulation (2) of the one-dimensional
equidistribution statement is taken in this paper as a
starting-point for the extension into multiple dimensions.
Only the two-dimensional case is discussed, but all develop-
ments can directly be extended into three dimensions.

A generic extension of the functional (2) suitable for two-
dimensional problems is

4 2
”—"+ﬁ) dpdg, (3)

Wa Wi
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where the weight functions w, are bounded differentiable
functions of p satisfying
w,z=C for all i, j,

with the constant C conviently taken C=1. It should be
noted that for general functions w the functional (3) is not
a member of the two classes of functionals evaluated
by Warsi and Thompson [ 127, since the integrand of (3)
cannot be expressed in terms of the metric coefficients.

A necessary condition for the functional KX to become
stationary is that its integrand satisfy the Euler equations

3 o)+ 2 ) o
op \wy, dg \w,

2 (2)2 2 (1)

Op\wy/ 8q\wx
which are linear and decoupled partial differential equations
for the functions &(p) and n(p), respectively. A number of
grid generation equations that have been reported in the
literature can be extracted from the generic model (3) and
(4) if p and ¢ are replaced by x and y. First, if all weight
functions are constant, ie., wy=1 for i=1,2 and j=1,2
then X is identical to the smoothness integral of Brackbill
and Saltzmann [11] and the Euler equations (4) return to
the Laplace equations, which can be used to some extent for
non-adaptive grid generation.

Second, if all weight functions are identical, ie., w,=w
fori=1,2andj=1, 2, then K is identical to the functional
used by Winslow [9] and the Euler equations become two
identical isotropic diffusion equations for &(p) and #(p),
which have been applied by Anderson [8]. Although these
equations enable grid adaption, the use of a single weight
function does not allow for anisotropic adaption in the
direction of the flow solution gradients which is required in
realistic CFD problems.

Finally, if two separate weight funct:ons are used, ie,
Wi =W, =w, and w,, = Wy, = w,, then Kis identical to the
integral proposed by Eiseman [ 1] and the Euler equations
(4) become two distinct isotropic diffusion equations for
&(p) and #(p) which allow for anisotropic adaption.
However, since w, and w, weight the gradients of & and #,
respectively, flow derivatives in the directions of these
gradients must be explicitly incorporated in order to obtain
anisotropic” adaption. Hence the weight functions will
depend on the mapping E(p) such that Eqs. (4) are not the
correct Euler equations for the functional X, see Warsi
and Thompson [127]. Anderson and Steinbrenner [5, 6]
apply these equations with the exception of some terms.
Alternatively Kim and Thompson [13] propose to use

gradients of separate flow solution components in the
weight functions (e.g., pressure in w, and velocity in w,).

(4a)

(4b)
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Although derivatives are taken w.r.t. p and g (or x and y)
such that Eqs. (4) are indeed the correct Euler equations,
there is a risk that the p and g {or x and y) coordinate lines
are not aligned with the gradients of ¢ and #, respectively.
In order to enable anisotropic adaption based on the
Euler equations (4) with two weight functions that are
associated with flow solution derivatives w.rt. p and g
instead of £ and #, it is proposed to take w;; = w,, = w, and
W3 = Wy, = w, for which the functional X can be written as

], (54 50 g

In contrast to the integral described by Eiseman [ 1] with
the integrand incorporating normals along curves in the
parametric domain of constant £ or », the present integral is
expressed in terms of tangents along curves in the computa-
tional domain of constant ¢ or p. Hence it is natural to
associate w, and w, with derivatives of the flow solution
w.r.t. p and g, respectively. The resulting Euler equations
become two identical anisotropic diffusion equations for
&(p. g) and n(p, q),

(5)

(&N, 9 (&) _
5p (Wl) * aq (Wz) =0, (6a)
O (mp\, 9 (1 _
() (me)=0 (6b)

which form the basis for specification of the inverse
adaption mapping 4~ in Fig. 1.

The requirement that the adapted grid in the parametric
domain Q, given by the functions p(<, ») and ¢(&, ) be
boundary conforming leads to the boundary conditions

00,9)=0, &l g}=1, nip,)=0, nip. =1 (7)
In addition, if no further conditions are specified, a set of
natural boundary conditions has to be satisfied in order to
make the functional X stationary (Ref. [ 14]):

E(p,0)=0,
1,(0,9)=0,

£Ap 1) =0,

8
11, 4)=0. ®)
It should be noted, however, that the Neumann boundary
conditions {8) may partly or entirely be replaced by
Dirichlet boundary conditions.
The stationary point of X is indeed a minimum. To show
this, let a function @ be defined as

D(ey, e,)=K[ & +515, #+e,i],

with & and # being admissible perturbation functions of the
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solution &= (&, #)T, and with £, and ¢, as arbitrary real
valued constants. Taylor expansion of @ around &, =&, =0,
with 0&/de, = 0®/de, = 0 due to the Euler equations (6) and
conditions (7), (8), yields

1 Bdf' 1, 3%
Do 02) = 20,0 =561 37 +563 7+
with
o' e &
a—ﬁ_zjfnp(w_]-{-w_z)dpdq’
2@ At oq
—=2 £+ -2 ) dpd
563 J‘J‘ (W|+ 2) P

Hence it follows that &(g, £,) — ®(0, 0) = 0 with equality if
and only if &; = ¢, = 0, which proves the assertion.

Finally it is interesting to note that, upon integration of
Eq. (6a) w.rt. g, integration of Eq. (6b) w.r.t. p, and applica-
tion of the natural boundary conditions (8), the following
two equations hold:

a1t¢, "

— | Fdg=0, 2 dp=0.

op J-o w, oq L i

These expressions can be interpreted as averaged forms of
the one-dimensional equidistribution statement (1).

4. MODIFICATION OF THE ADAPTION MAPPING

A disadvantage of grid adaption in the parametri¢
domain is the possible generation of excessive skew cells in
the physical domain when the initial grid incorporates cells
with aspect ratios that are much larger or smaller than
unity. To illustrate this, let ¢ be the angle between two lines
of the adapted grid in £2 with constant & and #, respectively,
and let the initial grid in £2 be orthogonal:

x, x,=0

The angle ¢ can be expressed as

X;-X
¢ = arc cos (-—~i—~"r—),
x|l lIx,

which upon substitution of the functions p(£, 1) and g(&, 1)
can be written as

(9)

Pep,+aq:q, )

¢ = arc cos ( ,
Jpi+alaip+aly;
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where « is the local cell aspect ratio of the initial grid:

=%, /1%, -

From (9) it can be deduced that when the adapted grid in
the parametric domain is nearly orthogonal, ie.,

Pe Py=Pc Py +4:q, </ Pi+0: P+ a2 =pell Ip,

the adapted grid in 2 is also nearly orthogonal when a = 1,
However, when a <€ 1 ora » 1 Eq. (9) shows that ¢ ~ 0 when
pep, #0o0rq.q, #0, respectively; i.c., the adapted grid in £
is collapsed. Celis of large or small aspect ratios within the
field of CFD occur commonly in boundary layers. Most
Navier-Stokes solvers need orthogonal grids in boundary
layers; i.¢., grid lines are required to originate from solid sur-
faces in the normal direction. Moreover, gradients in the
normal direction are much larger than in the tangential
direction. Hence it is desirable that the grid in the boundary
layers is primarily adapted in the normal direction and that
the adaption in the tangential direction is constrained by
the orthogonality requirement. To obtain this property
of the adaption algorithm, the adaption equations (6) are

modified,
LN E(Q)_
l'ap(w)”'zaq - =0, (10a)
0 (1, 4 (’rq)_
’l‘ap( )+/~23q e =0, (10b)

where 4, and 4, are functions of p and ¢ which are taken
proportionally to the squares of the local spacings of the
mitial grid in £:

L~ lxgls A~ lix, )%
With this choice the ratio 1,/4; is proportional to the
square of the cell aspect ratio:

Ay Ay ~al,

To illustrate the effect of the modification functions 4, and
A, let the edge ¢ =0 in £2,, represent a solid wall in £ and let
the cells of the initial grid along the wall be orthogonal and
have very small aspect ratios, i.e., @ <€ 1. As a consequence
A, € 4, and the modified equations can be approximated as

ad 1 d /1
aq(w—fq)"“”’ %(;;’fq)"““-

Suppose that the Neumann boundary conditions (&) are
applied, then { (p,0)=0 and consequently {,=0 for
increasing ¢ as long as the approximation (11} is valid, i.e.,

(11)
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as long as A, € A;. Hence the adapted grid in the boundary
layer is nearly orthogonal. A second implication of the
approximation (11) is that the equation for s (the second
equation of (11)) is similar to Eq. (1) which shows that the
grid in the boundary layer is adapted in the normal direc-
tion by one-dimensional equidistribution of the product

-1
wy .

Finaliy the boundary value problems based on the
modified adaption equations for the functions &(p, ¢) and
#( p, ) can be conveniently formulated by means of a linear
differential operator L, defined as

L,=AY, W'V, (12)
where V, is the Nabla operator (&/dp, d/0q)T and A and W
are diagonal matrices:

A O w, @ )
=5 o) -
With the operator L, the two boundary value problems for
¢ and # are formulated as:

(13)

L[&1=0, (p.q)'en,,
é(os Q):Oa é(la ‘I)=1,
AP =L {p, 1)=0,

(14)

and
Ll7)=0, (p.q)TeR,,
1,0, g} =1n,{1, ¢)=0, (15)
np,0)=0, nip, =1

The weight functions w,; and w, in (13) are specified in the
next section.

5. WEIGHT FUNCTIONS

In this section the weight functions w, and w, that control
the linear differential operator L, defined by Egs. (12) and
{13) are specified. Two questions are of importance:

(i) inwhat way can the weight functions be chosen such
that the accuracy of the numerical flow solution is improved
upon recalculation on the adapted grid, and

(i) in what way is the specification of the weight
functions influenced by the fact that the adaption problem
is formulated in the parametric domain.

Both questions can be analyzed to some extent for one-
dimensional problems with the flow solution characterized
by a single scalar function.
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Let QR be a scalar function of xe[0, L] =R that
represents a flow solution in one space dimension in the
physical domain, and let the adapted computational grid be
determined by the one-dimensional equidistribution state-
ment (1), formulated in the physical domain, which can be
written as

L
E.=cw, c“=] w dx,
4]

where ¢ is an integration constant. It is assumed that dis-
cretizations of the flow equations are second-order accurate
in space and incorporate numerical truncation errors that
are proportional to the second derivative of the flow
solution in the computational domain.

Hence it is important to analyze the effect of grid adap-
tion on the second derivative Q,,. Let the weight function w
be a positive functioni<of x which ensures that &, > 0.
With 0, = Q,:¢, and Q,, = Q&% + Q. &, it is possible to
express Q;; as .

1 x
Q{& =W (Qxx Aw; Qx)

Hence when Q. is positive for all xe[0, L], the second
derivative ;. is identically zero if the weight function is
taken as w=Q,, which eliminates the leading term in the
truncation error of the discrete approximation of Q. An
equivalent equidistribution statement can be formulated in
the parametric domain by substitution of £, =&, p,, 0, =
@, p. and dividing by p,
$,=cow*, w¥*=0,.

Hence in the particular case of positive Q. and taking
w= @, and w* = Q,, formulation in the parametric domain
is not only equivalent but also similar to formulation in the
physical domain. In practice, however, it is not possible to
take w* = Q,, since this leads to infinite grid spacing when
g,=0.

As an alternative, the equidistribution statement is
modified to

wt=/1+ Q.

Consequently w*=1 when Q,=0 but w*—|Q,| when
Q‘ﬁ » 1. The equivalent statement formulated in the physical
domain is not similar anymore:

When the flow solution is uniform, e.g., @, =0, the weight
function w is equal to p, and the initial grid is retained. This

{,=cw*,

C.=cw,
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1s in contrast with the situation that the equidistribution
statement is directly formulated in the physical domain with
P> inw replaced by unity, which results in a uniform grid
when 0, =0. :

The above presented analysis of one-dimensional
problems with the flow solution represented by a single
scalar function can be used as a guide for an extension
to two-dimensional problems with the flow solution repre-
sented by a vector function. Hence the weight functions w,
and w, that determine the operator L, are chosen as

wl='\/ I+HQP”2, W2=\.f 1+“Qq”2!

where Q € R” represents the flow solution with all the com-
ponents scaled to O(1) and |- || denotes the L -norm.

Taking w, and w, according to Egs. (16) yieids that, in
the case that the flow solution Q is a bilinear function of p
and g, ie., '

(16)

Q,=0 and Q. =0,

then the initial grid is optimal in the sense that discretisation
errors will be relatively small. Since the weight functions
satisfy

Mi_o  and Mg
op oq
the trivial solutions &(p,q)=p., n(p,q)=q for the

boundary value problems (14) and (15) are obtained, so
that the initial optimal grid is retained.

6. C-TOPOLOGY GRIDS

At this stage it convenient to describe a set of additional
mappings that are necessary to adapt C-topology grids
around two-dimensional airfoils; see Fig. 2. The problem is
that grid lines of constant i =, must be connected to grid
lines with i=1C—i;, (IC is the number of cells in the
i-direction) if the end points are lying on the wake line, the
part of the boundary j=0 which does not belong to the
airfoil. Formally the adaption equations can be transformed
to the physical domain and the roles of the physical
coordinates -acting as independent variables and the
computational coordinates acting as dependent variables
can be interchanged analytically. In this way the branch cut
can be treated with complete continuity.

The flow solver, however, that is used in the present
paper, based on solution of the Reynolds-averaged Navier—
Stokes equations including the Baldwin—Lomax turbulence
model, requires that the wake center line coincide with the
branch cut and that the grid is orthogonal across the viscous
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FIG. 2. C-topology around two-dimensional airfoil,

wake. The above-described branch cut treatment does not
meet the stated requirements in the viscous wake.

To meet the requirements of both grid continuity and
orthogonality across the viscous wake, it is proposed to
apply correction mappings such that the initial adaption
mapping A is modified minimally. The position of the
branch cut is pre-determined by the parametrization of the
physical space and could be adapted to the true position of
the wake center line. It should be noted that application of
correction mappings is a consequence of the flow solver
requirements, not a consequence of using a parametric
domain.

Two additional correction mappings C** and C* are
applied. The mapping C** provides that two grid lines with
i=n,and i=IC—n,, where »n, is the desired number of
cells along the wake line, have common end points at
the trailing edge of the airfoil. The mapping C* provides
common end points along the rest of the wake line. Both
mappings are essentially one-dimensional,

C* (& m) = (&% 1), C**: (E*, )~ (EX*, n);

hence, C* and C** are determined by the functions &*(¢)
and §**({*).
First, the function £**(£*) is taken as

$¥*=a;8% 1 a, % +a & + a,,
which minimizes the integral
SESE
o | d§*?
The constants 2, are determined from four compatibility

conditions:

n

Frr0)=0,  ger (l)=éf*,

IC
e (1-78) e

c =1,
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with &¥* and & * implicitly defined by

plER*) =1 _E'

way e

pEt™) = I

Hence, upon the mere application of C**, ie., £* = £, both

the lower and upper side of the wake contain n,, cells and

the grid lines i=n, and i=IC—n, have common end
points at the trailing edge.

Second, to obtain grid line continuity over the wake line,

the function £*(£) is defined on the intervals 0 < & <n,, /IC

and 1 —n,/IC < ¢ <1 by the implicit equation Q

PEFHEHE)) =2 p(E**EN + 1 — p(E**(1 = E))},

where the bracket term represents the mean of the lower and
upper grid point distributions along the wake line upon the
mere application of C**,

On the remaining interval n,/IC< &< 1 —n,/IC, £*{&)
is taken as

é*=b3£3+b2§2+bié+b05

which minimizes the integral
| —m fIC 26* 2
d
e )

and provides grid smoothness at the trailing edge if the con-
stants b, are determined from the following compatibility

conditions:
w vy _Mw _ e _By
¢ (IC) c’ ¢ (1 IC) : ic’
dc*
— (&),

& ()
dé \IC Etneiic dE
dc* L £2
di (1~E’)_éu“ﬁuﬂcd_é(§)

It is easily verified that the application of both C* and C**
yields the properties:
() p(&**E*n, /IC)))=n,/IC,
(u}y p(&**(&*1—n,/IC)))=1-n,/IC, and
(i) p(E*HEHEN) =1 —p(E**(EH1 —&))
forO<é«<n, /JICand 1 —n, /IC<E<1,

which ensures common end points at the trailing edge, (i)
and (ii), and continuity over the wake line, (iii). The use of

the two minimized integrals forces the corrected grid to be
very similar to the non-corrected grid.
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7. NUMERICAL SOLUTION METHOD

Instead of analytically interchanging the dependent and
independent variables of the grid adaption equations (10},
which is commonly the method applied in the literature, the
boundary value problems (14} and (15) are directly solved
for the functions £(p, q) and #( p, g) which are numerically
inverted to the functions p(&, ) and g(Z, ). An advantage
of the present method is that two linear decoupled equa-
tions can be solved separately instead of two non-linear
coupled equations simultaneously. A disadvantage is the
need for an additional computational step to invert the
functions £(p, ) and »(p, q).

Let the initial uniform grid in the parametric domain
consist of IC cells in the p-direction and JC cells in the
g-direction, where FC and JC are positive integers. The
differential operator L, defined by (12), (13), and (16)
can be approximated by a second-order accurate difference
operator L" by replacing derivatives by central differences.
In an 1nter10r grid point (0 <i<IC and ¢ <j<JC) L" 15
defined as

Lﬁ[ 1=Bn )i +BsChijo i+ Bcl).
TP Vit Bwl Dio1 o

with
1 23.;"' 8 _i_ 2/1"2"
ﬁN_qungJr]-l-W;'j, S_qung_l-i-wiz'j,
1 2457 1 2457
ﬁEz : ﬂw= L

_—— —S T T
Ap" wrl+ [ + wllu' ! APZ Wll LJ+ w!l.]

Be=—(fn+Bs+ B+ By),

where the subscripts and superseripts 7, j indicate at which
node the functions are evaluated, with Ap=1/IC and 4g =
1/JC. The normal derivatives at the boundaries of £, are
approximated by one-sided differences, e.g.,

a 1 3 1
5( )O,jz_"{_z( )0.j+2( )14_5( )z.,},

Ap

which are also second-order accurate.

Both systems of linear equations that result from the
above-described discretizations of the boundary value
problems (14) and (15) are solved by red-black Gauss—
Seidel relaxation. A correction storage multi-grid technique
[15] with fixed V-cycles is used to increase the rate of con-
vergence. No further attention 1s paid to optimization of the
described iteration procedure since this is not the primary
goal of the present paper.

The solutions of the above-described linear systems
provide values for £ and # in all points of the uniform grid



176

in 2, and determine the inverse adaption mapping 4! of
Fig. 1. The mapping A is determined in discrete form by a
set of points p,;=(p;, qr,-}-)T that satisfies the following set of
algebraic equations:

J

: T
é(p,»j)=(l—lc~,ﬁ) , ie[0,IC]), je[0,JCT], (17

where £(p) = (£(p), #(p))" is a piecewise bilinear interpola-
tion of the points £ ; and »,,. When Eq. (17) is satisfied, then
for all points (§/IC, j/JC)" of a uniform grid in the computa-
tional domain £2, associated values of p and ¢ are known,
which determines the adaption mapping 4. In order to find
the set p;, the following iteration procedure is applied:

This can be interpreted as an explicit time-stepping scheme
with time-step At {4t =0.1 in this paper). The stationary
solution of (18) satisfies Eq. (17).

Finally the two correction mappings C* and C** of
Section 6 are applied and the obtained adapted grid in the
parametric domain €2, is mapped to the physical domain 2
by the mapping M, see Fig. 1. At all stages piecewise linear
or bilinear interpolation is used to approximate the map-
pings C*, C**, A4, and M. This concludes the description of
the numerical solution method.

8. EXAMPLES OF NUMERICAL GRID ADAPTION

As a first example, the adaption aigorithm described in
the previous sections is applied to a model problem
that simulates the interaction of an oblique shock and a
boundary layer represented by a single scalar function

u(x, y),

u(x, y) = tanh(10y) — tanh(5(x — 2) — 10y},

on the rectangular domain 0 € x <4, 0 < y <2. The initial
grid of 32 x 16 celis and a contour plot of the function u are
shown in Fig. 3a. Figures 3b-3d show the grid after 1, 2,
and 10 adaptions, respectively, where the first adapted grid
is taken as the initial grid for the second adaption and so
on. The modification functions 4, and 1, in (10) have been
taken as

Ao=lxglh A=lx R

The first adapted grid shows the cell concentration at both
the “shock” and the “boundary-layer.” The effects of
piecewise bilinear interpolation can be observed in the
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FIG. 3. Initial grid and function contours for oblique-shock/
boundary-layer simulation (a), and grids after 1(b), 2{(c), and 10 (d)
adaptions.

boundary layer and some small wiggles seem to be present
which may be caused by even—odd decoupling of the dis-
crete differential equations. These are minor drawbacks,
however, and the adapted grid is acceptable. More adaption
cycles result in stronger cell concentrations and skew cells at
the “shock,” but they also show the robustness of the algo-
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rithm since the last adapted grid (Fig. 3d) is still a regular
nen-overlapping grid.

Figures 4a—4d show the function « in the computational
domain initially and after 1,2, and 10 adaptions,
respectively. Already after one adaption the gradients in the
computational domain decrease significantly, and after 10
adaptions the *shock™ and “boundary layer” almost
disappear. Finally it may be noted that the first adaption is
the most effective one; see Figs. 4a-4b, while the following
adaptions show less rigorous effects.

The next example shows the influence of the modification
functions A, and 4, in {10} on the adaption of a highly
stretched grid around the leading edge of an airfoil, see
Figs. 5a—5¢. When i, =i, =1, see Fig. 5b, the adapted grid
is excessively skew in and near the boundary layer, which is
in agreement with the analysis of Section 4.

When 4, = ||x,|l, 4, = |x, || {see Fig. 5¢), the adapted grid
outside the boundary layer has improved significantly;
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however, inside the boundary layer {not shown) the grid is
still skew. When 4, =[x, [1%, A;=]x,]|* (see Fig. 5d) the
adapted grid is also orthogonal in the boundary layer (not
shown) while the grid adaptton in the normal direction to
the airfoil surface dominates. But this unfortunately results
in excessive depletion of cells in the tangential direction;
compare Figs. 5a, 5b, and 5d. In order to obtain both one-
dimensional equidistribution in the normal direction inside
the boundary layer and adaption in the tangential direction
controlled by the flow at the edge of the boundary layer, the
following choice for the modification functions is proposed:

M=wilx % A=wilx, |2 (19)
Because just outside the boundary layer flow-solution
derivatives in the normal direction are much smalter than in
the tangential direction (w, < w)), the tangential adaption
dominates when |x,|/|[x, || is not too small. The resulting
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FIG. 4. Function contours in the computational domain for oblique-shock/boundary-layer simulation: initially (a) and after 1 (b), 2 (¢}, and 10 (d)

adaptions.
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FIG. 5. Initial grid (a) and adapted grid (b) around leading edge with i, = 1, = 1. Adapted grid around leading edge with A, = |x, ||, 42=|Ix, ] (),
with 4, = ||x, % A2 = lIx, I1? (&), with 4, =w} Ix, %, 2;=w} [|x,}* (e), and close-up of the upper side (f).

adapted grid is depicted in Fig. 5¢, which shows that
grid lings in the normal direction to the airfoil enter the
boundary layer orthogonally while around the leading edge
the grid is also significantly refined w.r.t. the initial grid.
Inside the boundary layer the grid is also orthogonal, see
Fig. 5f. Hence, the choice {19) for the modification functions
is used in the remainder of this section.

The final example consists of the adaption of a
C-topology grid around the RAE 2822 airfoil suitable for
solution of the Reynolds-averaged Navier-Stokes equations
(M, =07250, Re, =6.5x10° a=244°), The grid con-
sists of 352 x 64 cells with 256 cells along the airfoil, 48 cells
at both sides of the wake line, and 64 cells in the normal
direction to both the airfoil and the wake line. The flow



GRID ADAPTION

FIG. 5—Continued

equations are solved with a vertex-based central-difference
scheme combined with the Baldwin-Lomax turbulence
model, described by Brandsma [16]. Large parts of the
initial and adapted grids are shown in Figs. 6a—6b and
detailed views are depicted in Figs. 5a, S¢ (leading edge
area) and in Figs. 7a, 7b (shock area). The weight functions
have been smoothed three times as
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to eliminate spurious oscillations. The execution time
needed to solve the adaption equations and to invert the
adaption mapping amounts about 75 CPU seconds on a
NEC SX-3 supercomputer, needed for 1254 V-cycles on the
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FIG. 6. Initial (a) and adapted {b} grids arcund RAE2822 airfoil for
transonic flow conditions (M = 0,725, Re = 6.5 x 10°, a = 2.44°),
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FIG. 7. Initial {a} and adapted (b} grids at the shock region.

E-equation, 974 V-cycles on the y-equation, and 961 itera-
tions on the inverston equations to decrease the maximum
residuals 11, 12, and 14 orders of magnitude, respectively.
The pressure distributions along the airfoil surface are
shown in Figs. 8a, 8b, and the Mach number contours are
shown in Figs. 9a, 9b. Both the shock and the leading edge
expansion are better resolved on the adapted grid. Behind
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FIG. 8. Pressure distributions along the airfoi! calculated on the initial
{a) and adapted (b) grids.

the shock the kink in the pressure distribution has disap-
peared and the Mach number distribution just outside the
boundary layer has become more uniform in the normal
direction. The lift coefficient changed from (.7714 to 0.7926
{2.7%), the drag coefficient changed from 0.01259 to
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FI1G. 9. Mach number distributions caleulated on the initial {a) and
adapted (b) grids.

0.01248 (1 count} and the pitching coefficient changed from
~0.09125 to —0.09399 (3%.).

Finally it is interesting to see how the flow solution in the
computational domain changed due to grid adaption and
recalculation of the flow. In Figs. 10a—10b the Mach num-
ber distribution is depicted in the computational domain.
Both the expansion zone at the leading edge and the
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boundary layer are more smoothly distributed in the
adapted case (Fig, 10b). The shock in the boundary layer
has smeared out and the shock in the inviscid outer flow has
been regenerated by recalculation of the flow. An exception
is the trailing edge region, where gradients in the com-
putational domain are increased upon grid adaption in the
lowest part of the boundary layer. This is probably caused
by the modification function 4, defined in (19) which is less
sensitive for gradients in the strecamwise direction when
the initial grid has locally very high aspect ratios. In
Figs. lla-11b the pressure—coeflicient distribution is
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F1G. 10. Mach number distributions in the computational domain
calculated on the initial (a) and adapted (b) grids.
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FIG. 1i. Pressure coefficient distributions in the computational
domain calculated on the initial (a} and adapted (b) grids.

depicted in the computational domain. The same effects as
for the Mach number distribution can be observed. This
concludes the description of grid adaption examples.

9. CONCLUSIONS

A new grid adaption algorithm for computational fluid
dynamics problems in two space dimensions has been
developed. Four essential steps in the algorithm can be
distinguished:

R. HAGMEIJER

(i) The adapted equations are formulated in the
so-called parametric domain associated with the initial grid
that has to be adapted.

(ii) The basic adaption equations are derived from
variational principles and can be interpreted as anisotropic
diffusion equations.

{iii) The adaption equations are modified to obtain the
following desirable properties in boundary layers:

preservation of orthogonality,

one-dimensional equidistribution of a weight func-
tion in the normal direction, and

adaption in the flow direction controlled by the
outer flow.

{iv) The modified anisotropic diffusion equations are
directly solved for the computational coordinates (&, 77} as
functions of the parametric coordinates (p,q) and the
resulting mapping is numerically inverted.

The functional that is minimized to give the anisotropic
diffusion equations mentioned under (ii) can be interpreted
as the sum of weighted norms of tangents along curves of
constant p or ¢ in the computational domain. This is dif-
ferent from the functionals of Winslow [9] and Eiseman
[ 1], which can be interpreted as the sum of weighted norms
of normals to curves of constant ¢ and # in the parametrical
or physical domain.

The present algorithm appears to be robust in the sense
that for the presented adaption examples no overlapping
cells are generated while the initial grids are heavily
adapted. A model problem for oblique-shock/boundary-
layer simulation characterized by a scalar function u shows
that upon 10 successive adaption cycles the function u tends
towards a very smooth distribution in the computational
domain. The same effect can be observed to some extent
from a second numerical example, where both the Mach
number and the pressure-coeflicient distribution associated
with the flow around the RAE2822 airfoil become globally
smooth functions in the computational domain upon grid
adaption and recalculation of the flow solution. This is
considered as a positive feature of the adaption algorithm
because numerical errors in the flow solution can partly be
traced back to second derivatives of the flow solution in the
computational domain. The Navier—Stokes test case also
shows that the shock and boundary layer are well resolved
on the adapted grid and that the grid is orthogonal
throughout the entire boundary layer and wake. For
C-topology grids it is essentially necessary to apply addi-
tional correction mappings to provide common end points
of grid lines at the trailing edge and grid continuity across
the wake line. The present construction of the correction
mappings is based on two minimization problems; this
ensures that the characteristics of the initially adapted grid
are globally retained.
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In conclusion it is stated that the present grid-adaption
algorithm is promising w.r.t. robustness and boundary-layer
properties. The possible occurrence and drawback of grid
skewness, as well as the influence of grid adaption in
successive parametric domains are issues to be analyzed in
future work.
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